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Motivation for Model Reduction in  
Uncertainty Quantification 

• Many real applications require Bayesian inference of high-
dimensional random fields. 

Objective: Given some measured output quantities of 
interest with noise, estimate the inputs that generated 

these outputs and their posterior distribution. 

• Bayesian inference tools cannot handle high-dimensional 
parameter spaces → curse of dimensionality! 

 

• Every proposed point in MCMC sampling requires a high-
fidelity forward solve → intractable! 

 

Reduced Order Models (ROMs) can circumvent these difficulties: 
 

• Reduce large-dimensional inversion problem  to small-
dimensional problem by representing unknown input in reduced 
basis (Karhunen-Loeve/Proper Orthogonal Decomposition).   

 

• Replace high-fidelity forward solve in MCMC algorithm with ROM. 
 

Greenland  Ice Sheet Example 
  

• Measured output: surface velocity 
• Unknown input: basal sliding 

coefficient at bedrock 
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Proper Orthogonal Decomposition (POD)/ 
Galerkin Method to Model Reduction 
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• Snapshot matrix: 𝑿 = (𝒙1, …, 𝒙𝐾) ∈ ℝ𝑁𝑥𝐾 

• SVD: 𝑿 = 𝑼𝜮𝑽𝑇 

• Truncation: 𝜱𝑀 = (𝝓1, … , 𝝓𝑀) = 𝑼 : , 1:𝑀  

𝑁 = # of dofs in high-
fidelity simulation 
𝐾 = # of snapshots 
𝑀 = # of dofs in ROM  
(𝑀 <<  𝑁, 𝑀 <<  𝐾) 



Stability Issues of POD/Galerkin ROMs 

LTI Full Order Model (FOM) 
 

𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡  
          𝒚 𝑡 = 𝑪𝒙 𝑡   

LTI Reduced Order Model (ROM) 
 

𝒙 𝑀 𝑡 = 𝑨𝑀𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡  
          𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    

• ROM Linear Time-Invariant (LTI) system matrices given by:  
 

𝑨𝑀 = 𝜱𝑀
𝑇𝑨𝜱𝑀,       𝑩𝑀 = 𝜱𝑀

𝑇𝑩,          𝑪𝑀 = 𝑪𝜱𝑀 

Problem: 𝑨 stable ⇏  𝑨𝑀 stable! 

• There is no a priori stability guarantee for 
POD/Galerkin ROMs.   

 

• Stability of a ROM is commonly evaluated a 
posteriori – RISKY! 

 

• Instability of POD/Galerkin ROMs is a real 
problem in some applications… 
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…e.g., compressible cavity flows, 
high-Reynolds number flows, ...  
 



1. ROMs which derive a priori a stability-preserving model reduction 
framework (usually specific to an equation set). 
 

• ROMs based on projection in special ‘energy-based’ (not 𝐿2) 
inner products, e.g., Rowley et al. (2004), Barone & Kalashnikova 
et al. (2009), Serre et al. (2012). 

 
2.  ROMs which stabilize an unstable ROM through an a posteriori post-
processing stabilization step applied to the algebraic ROM system.  
 

• Petrov-Galerkin ROMs that solve an optimization problem for 
the test basis given a trial POD basis, e.g., Amsallem et al. 
(2012), Bond et al. (2008). 

 

• ROMs with increased numerical stability due to inclusion of 
‘stabilizing’ terms in the ROM equations, e.g., Wang et al. 
(2012).   

 
 

Can have 
inconsistencies 
between ROM 

and FOM physics 

Can have an 
intrusive 

implemetation 

Stability Preserving ROM Approaches:  
Literature Review 

Approaches for building stability-preserving POD/Galerkin  
ROMs found in the literature fall into two categories:  
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• Recall that the ROM LTI system is given by: 

New Approach*: ROM Stabilization via  
Optimization-Based Eigenvalue Reassignment 

• Approach falls in 2nd category of stabilization methods, but ensures stabilized ROM 
solution deviates minimally from FOM solution.  

An exact solution to the ROM LTI system can be 
derived using the matrix exponential. 
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𝒙 𝑀 𝑡 = 𝑨𝑀𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡  
    𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    

• The solution to the ROM LTI system is:  

𝒙𝑀 𝑡 = exp 𝑡𝑨𝑀 𝒙𝑀 0 +  exp{ 𝑡 − 𝜏 𝑨𝑀}𝑩𝑀𝑢 𝜏 𝑑𝜏
𝑡

0

 

⇒ 𝒚𝑀 𝑡 = 𝑪𝑀 exp 𝑡𝑨𝑀 𝒙𝑀 0 +  exp{ 𝑡 − 𝜏 𝑨𝑀}𝑩𝑀𝑢 𝜏 𝑑𝜏
𝑡

0

 

*I. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. "Stabilization of 
Projection-Based Reduced Order Models for Linear Time-Invariant Systems via Optimization-
Based Eigenvalue Reassignment". Comput. Meth. Appl. Mech. Engng. 272 (2014) 251-270. 

Goal: modify ROM system s.t. 
𝑨𝑀 is stable and discrepancy 
b/w ROM output 𝒚𝑀 𝑡  and 
FOM output 𝒚 𝑡  is minimal. 

𝒙 𝑀 𝑡 = 𝑨 𝑀𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡  
    𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    

Goal: replace unstable 𝑨𝑀 
with stable 𝑨 𝑀 so discrepancy 
b/w ROM output 𝒚𝑀 𝑡  and 
FOM output 𝒚 𝑡  is minimal. 



ROM Stabilization via Optimization-Based  
Eigenvalue Reassignment (continued) 

ROM Stabilization Optimization Problem  
(Constrained Nonlinear Least Squares):  

 

𝑚𝑖𝑛
𝜆𝑖
𝑢
 ||𝒚𝑘 − 𝒚𝑀

𝑘||2
2

𝐾

𝑘=1

 

                           𝑠. 𝑡.  𝑅𝑒 𝜆𝑖
𝑢 < 0 

• 𝜆𝑖
𝑢 = unstable eigenvalues of original ROM matrix 𝑨𝑀.   

 

• 𝒚𝑘 = 𝒚(𝑡𝑘) = snapshot output at 𝑡𝑘. 
 

• 𝒚𝑀
𝑘 = 𝑪𝑀 exp 𝑡𝑘𝑨𝑀 𝒙𝑀 0 +  exp{ 𝑡𝑘 − 𝜏 𝑨𝑀}𝑩𝑀𝑢 𝜏 𝑑𝜏

𝑡
𝑘

0
 = ROM output at 𝑡𝑘. 

 

• ROM stabilization optimization problem is small: < 𝑂(𝑀). 
 

• ROM stabilization optimization problem can be solved by standard optimization algorithms, 
e.g., interior point method. 

 

• We use fmincon function in MATLAB’s optimization toolbox. 
 

• We implement ROM stabilization optimization problem in characteristic variables 
𝒛𝑀(𝑡) = 𝑺𝑀

−1𝒙𝑀(𝑡) where 𝑨𝑀 = 𝑺𝑀𝑫𝑀𝑺𝑀
−1. 
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(1) 

Replace unstable 
𝑨𝑀 with stable 𝑨 𝑀. 



ROM Stabilization via Optimization-Based  
Eigenvalue Reassignment (continued) 
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Algorithm 
 

• Diagonalize the ROM matrix 𝑨𝑀: 𝑨𝑀 = 𝑺𝑀𝑫𝑀𝑺𝑀
−1. 

• Initialize a diagonal 𝑀 ×𝑀 matrix 𝑫 𝑀.  Set 𝑗 = 1. 
• for 𝑖 = 1 to 𝑀 

• if 𝑅𝑒(𝐷𝑀(𝑖, 𝑖) < 0), set 𝐷 𝑀(𝑖, 𝑖) = 𝐷𝑀(𝑖, 𝑖). 
• else, set 𝐷 𝑀(𝑖, 𝑖) = 𝜆𝑗

𝑢. 
•  Increment 𝑗 ← 𝑗 + 1. 
• Solve the optimization problem (1) for the eigenvalues {𝜆𝑗

𝑢} using an 
optimization algorithm (e.g., interior point method). 

• Evaluate 𝑫 𝑀 at the solution of the optimization problem (1). 
• Return the stabilized ROM system, given by 𝑨𝑀 ← 𝑨 𝑀 = 𝑺𝑀𝑫 𝑀𝑺𝑀

−1. 

• Solution to optimization problem (1) may not be unique. 
 

• Can solve (1) for real or complex-conjugate pair eigenvalues:  
•  𝜆𝑗

𝑢 ∈ ℝ s.t. constraint 𝜆𝑗
𝑢 < 0. 

• 𝜆𝑗
𝑢= 𝜆𝑗

𝑢𝑟 + 𝑖 𝜆𝑗
𝑢𝑐, 𝜆𝑗 + 1

𝑢= 𝜆𝑗
𝑢𝑟 − 𝑖 𝜆𝑗

𝑢𝑐 ∈ ℂ where 𝜆𝑗
𝑢𝑟, 𝜆𝑗

𝑢𝑐 ∈ ℝ  
s.t. constraint 𝜆𝑗

𝑢𝑟 < 0. 
 

 



Numerical Results #1: International  
Space Station (ISS) Benchmark 

• FOM: structural model of component 1r of the International Space Station (ISS).  
 

• 𝑨, 𝑪 matrices defining FOM downloaded from NICONET ROM benchmark repository*. 
 

• No inputs (unforced), 1 output; FOM is stable. 
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Component 1r 

*NICONET ROM benchmark repository:  www.icm.tu-bs.de/NICONET/benchmodred.html. 

http://www.icm.tu-bs.de/NICONET/benchmodred.html
http://www.icm.tu-bs.de/NICONET/benchmodred.html
http://www.icm.tu-bs.de/NICONET/benchmodred.html
http://www.icm.tu-bs.de/NICONET/benchmodred.html


Numerical Results #1 : ISS Benchmark 
(continued) 

 

• 𝑀 = 20 POD/Galerkin ROM constructed from 𝐾 = 2000  snapshots up to time 𝑡 = 0.1.   
 

• 𝑀 = 20 POD/Galerkin ROM has 4 unstable eigenvalues: 2 real, 2 complex 
 

 

• Two options for ROM stabilization optimization problem:  
 

Option 1: Solve for 𝜆1, 𝜆2, 𝜆3, 𝜆4 ∈ ℝ s.t. the constraint 𝜆1, 𝜆2, 𝜆3, 𝜆4 < 0. 
 

Option 2: Solve for 𝜆1+ 𝜆2𝑖, 𝜆1− 𝜆2𝑖 ∈  ℂ, 𝜆3, 𝜆4 ∈ ℝ  s.t. the constraint 𝜆1, 𝜆3, 𝜆4 < 0. 
 

• Initial guess for fmincon interior point method: 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = −1. 
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ROM 

 | 𝒚𝑘 − 𝒚𝑀
𝑘 |2

𝐾
𝑘=1

2

 | 𝒚𝑘 |2
𝐾
𝑘=1

2

 

Unstabilized POD 1737.8 

Optimization Stabilized 
POD (Real Poles) 

0.0259 

Optimization Stabilized 
POD (Complex-Conjugate 
Poles) 

0.0252 
 



Numerical Results #2: Electrostatically  
Actuated Beam Benchmark 

• FOM = 1D model of electrostatically actuated beam. 
 

• Application of model: microelectromechanical 
systems (MEMS) devices such as electromechanical 
radio frequency (RF) filters. 

 

• 1 input corresponding to periodic on/off switching, 1 
output, initial condition 𝒙(0) = 𝟎𝑁. 

 

• Second order linear semi-discrete system of the 
form:  

 

𝑴𝒙 𝑡 + 𝑬𝒙 𝑡 + 𝑲𝒙 𝑡 = 𝑩𝒖 𝑡  
                                              𝒚 𝑡 = 𝑪𝒙 𝑡  
 

• Matrices 𝑴, 𝑬, 𝑲, 𝑩, 𝑪 specifying the problem 
downloaded from the Oberwolfach ROM      
repository*.  

 

• 2nd order linear system re-written as 1st order LTI 
system for purpose of analysis/model reduction. 

 
11/14 • FOM is stable. 

* Oberwolfach ROM benchmark repository: http://simulation.uni-freiburg.de/downloads/benchmark. 

http://simulation.uni-freiburg.de/downloads/benchmark
http://simulation.uni-freiburg.de/downloads/benchmark
http://simulation.uni-freiburg.de/downloads/benchmark
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• 𝑀 = 17 POD/Galerkin ROM constructed from 𝐾 = 1000  snapshots up to time 𝑡 = 0.05.   
 

• 𝑀 = 17 POD/Galerkin ROM has 4 unstable eigenvalues (all real). 
 

• Two options for ROM stabilization optimization problem:  
 

Option 1: Solve for 𝜆1, 𝜆2, 𝜆3, 𝜆4 ∈ ℝ s.t. the constraint 𝜆1, 𝜆2, 𝜆3, 𝜆4 < 0. 
 

Option 2: Solve for 𝜆1+ 𝜆2𝑖, 𝜆1− 𝜆2𝑖, 𝜆3 + 𝜆4𝑖, 𝜆3 −𝜆4𝑖 ∈ ℂ  s.t. the constraint  
𝜆1, 𝜆3 < 0. 
 

• Initial guess for fmincon interior point method: 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = −1. 
 

 
 

ROM 

 | 𝒚𝑘 − 𝒚𝑀
𝑘 |2

𝐾
𝑘=1

2

 | 𝒚𝑘 |2
𝐾
𝑘=1

2

 

Unstabilized POD 𝑁𝑎𝑁 

Optimization Stabilized 
POD (Real Poles) 

0.0194 

Optimization Stabilized 
POD (Complex-Conjugate 
Poles) 

0.0205 

Balanced Truncation 1.370𝑒 − 6 

Numerical Results #2: Electrostatically  
Actuated Beam Benchmark (continued) 



Summary & Future Work 

 

• A new ROM stabilization approach that modifies a posteriori an unstable ROM LTI system by 
changing the system’s unstable eigenvalues is proposed.  

 

• In the proposed stabilization algorithm, a constrained nonlinear least squares optimization 
problem for the ROM eigenvalues is formulated to minimize error in ROM output.  

 

• Excellent performance of the proposed algorithm is evaluated on two benchmarks. 
 

• Paper on the proposed new method was just published in CMAME!  
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Ongoing/Future work 
 

 

• Applications to Uncertainty Quantification (UQ).  
 

• Studies of predictive capabilities of stabilized ROMs (robustness w.r.t. parameter 
changes). 

 

• Extensions to nonlinear problems.  
 

I. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. "Stabilization of 
Projection-Based Reduced Order Models for Linear Time-Invariant Systems via Optimization-

Based Eigenvalue Reassignment". Comput. Meth. Appl. Mech. Engng. 272 (2014) 251-270. 
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Appendix: ISS Benchmark (fmincon  
performance) 

Real Poles Complex-Conjugate Poles 

# upper bound 
constraints 

4 3 

# iterations  29 27 

# function evaluations 30 30 

|𝛻𝐿| at convergence  
(1st order optimality) 

4.00e-7 5.51e-7 

Current Function Value 

Current Function Value 

First-Order Optimality 

 0.00640948 

5.50885e-07 
 0.00683859   4.00842e-07 
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First-Order Optimality 



Appendix: ISS Benchmark  
(CPU Times) 

Model Operations CPU time (sec) 

FOM Time-Integration 1.71e2 

ROM – offline stage Snapshot collection (FOM time-
integration) 

1.71e2 

Loading of matrices/snapshots 6.99e-2 

POD 6.20 

Projection 8.18e-3 

Optimization 2.28e1 

ROM – online stage  Time-integration 3.77 

• To offset total pre-process time of ROM (time required to run FOM to collect 
snapshots, calculate the POD basis, perform the Galerkin projection, and solve the 
optimization problem (1)), the ROM would need to be run 53 times. 
 

• Solution of optimization problem is very fast: takes < 1 minute to complete.  
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Appendix: Electrostatically Actuated Beam  
Benchmark (fmincon performance) 

Real Poles Complex-Conjugate Poles 

# upper bound 
constraints 

4 2 

# iterations  60 31 

# function evaluations 64 32 

|𝛻𝐿| at convergence  
(1st order optimality) 

2.27e-7 8.43e-7 

Current Function Value 

Current Function Value 

  First-Order Optimality First-Order Optimality 

 1.23598 

8.43228e-07   2.26927e-07 
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 1.13229 



Appendix: Electrostatically Actuated 
Beam  Benchmark (CPU Times) 

Model Operations CPU time (sec) 

FOM Time-Integration 7.10e4 

ROM – offline stage Snapshot collection (FOM time-
integration) 

7.10e4 

Loading of matrices/snapshots 5.17 

POD 1.09e1 

Projection 2.55e1 

Optimization 8.79e1 

ROM – online stage  Time-integration 6.78 

• To offset total pre-process time of ROM (time required to run FOM to collect 
snapshots, calculate the POD basis, perform the Galerkin projection, and solve the 
optimization problem (1)), the ROM would need to be run 1e4 times (due to large CPU 
time of FOM). 
 

• Solution of optimization problem is very fast: takes ~1.5 minute to complete.  
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Unstable 
Eigenvalues 

𝜆6 = 16,053 

𝜆12 = 48.985 

𝜆14 = 12.650 

𝜆17 = 0.05202 

Stabilized Eigenvalues 
(Real) 

Stabilized Eigenvalues 
(Complex Conjugates) 

𝜆6 = −7,043,505 𝜆6 = −106,976 + 551.77𝑖 

𝜆12 = −35.364 𝜆12 = −106,976 − 551.77 

𝜆14 = −153,033 𝜆14 = −2954.1 − 1244.7𝑖 

𝜆17 = −99,175 𝜆17 = −2954.1 + 1244.7𝑖 
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Appendix: Electrostatically Actuated  
Beam Benchmark (Eigenvalues) 


